Functional KCa3.1 K+ channels are required for human lung mast cell migration.
نویسندگان
چکیده
BACKGROUND Mast cell recruitment and activation are critical for the initiation and progression of inflammation and fibrosis. Mast cells infiltrate specific structures in many diseased tissues such as the airway smooth muscle (ASM) in asthma. This microlocalisation of mast cells is likely to be key to disease pathogenesis. Human lung mast cells (HLMC) express the Ca2+ activated K+ channel K(Ca)3.1 which modulates mediator release, and is proposed to facilitate the retraction of the cell body during migration of several cell types. A study was undertaken to test the hypothesis that blockade of K(Ca)3.1 would attenuate HLMC proliferation and migration. METHODS HLMC were isolated and purified from lung material resected for bronchial carcinoma. HLMC proliferation was assessed by cell counts at various time points following drug exposure. HLMC chemotaxis was assayed using standard Transwell chambers (8 microm pore size). Ion currents were measured using the single cell patch clamp technique. RESULTS K(Ca)3.1 blockade with triarylmethane-34 (TRAM-34) did not inhibit HLMC proliferation and clotrimazole had cytotoxic effects. In contrast, HLMC migration towards the chemokine CXCL10, the chemoattractant stem cell factor, and the supernatants from tumour necrosis factor alpha stimulated asthmatic ASM was markedly inhibited with both the non-selective K(Ca)3.1 blocker charybdotoxin and the highly specific K(Ca)3.1 blocker TRAM-34 in a dose dependent manner. Although K(Ca)3.1 blockade inhibits HLMC migration, K(Ca)3.1 is not opened by the chemotactic stimulus, suggesting that it must be involved downstream of the initial receptor-ligand interactions. CONCLUSIONS Since modulation of K(Ca)3.1 can inhibit HLMC chemotaxis to diverse chemoattractants, the use of K(Ca)3.1 blockers such as TRAM-34 could provide new therapeutic strategies for mast cell mediated diseases such as asthma.
منابع مشابه
Adenosine closes the K+ channel KCa3.1 in human lung mast cells and inhibits their migration via the adenosine A2A receptor
Human lung mast cells (HLMC) express the Ca2+-activated K+ channel KCa3.1, which opens following IgE-dependent activation. This hyperpolarises the cell membrane and potentiates both Ca2+ influx and degranulation. In addition, blockade of KCa3.1 profoundly inhibits HLMC migration to a variety of diverse chemotactic stimuli. KCa3.1 activation is attenuated by the beta2adrenoceptor through a Galph...
متن کاملKCa3.1 channel inhibition leads to an ICAM-1 dependent increase of cell-cell adhesion between A549 lung cancer and HMEC-1 endothelial cells
Early metastasis leads to poor prognosis of lung cancer patients, whose 5-year survival rate is only 15%. We could recently show that the Ca2+ sensitive K+ channel KCa3.1 promotes aggressive behavior of non-small cell lung cancer (NSCLC) cells and that it can serve as a prognostic marker in NSCLC. Since NSCLC patients die of metastases, we investigated whether KCa3.1 channels contribute to poor...
متن کاملEngagement of the EP2 prostanoid receptor closes the K+ channel KCa3.1 in human lung mast cells and attenuates their migration
Human lung mast cells (HLMC) express the Ca(2+)-activated K(+) channel K(Ca)3.1, which plays a crucial role in their migration to a variety of diverse chemotactic stimuli. K(Ca)3.1 activation is attenuated by the beta(2)-adrenoceptor and the adenosine A(2A) receptor through a G(s)-coupled mechanism independent of cyclic AMP. Prostaglandin E(2) promotes degranulation and migration of mouse bone ...
متن کاملExpression and Role of the Intermediate-Conductance Calcium-Activated Potassium Channel KCa3.1 in Glioblastoma
Glioblastomas are characterized by altered expression of several ion channels that have important consequences in cell functions associated with their aggressiveness, such as cell survival, proliferation, and migration. Data on the altered expression and function of the intermediate-conductance calcium-activated K (KCa3.1) channels in glioblastoma cells have only recently become available. This...
متن کاملSelective Activation of KCa3.1 and CRAC Channels by P2Y2 Receptors Promotes Ca2+ Signaling, Store Refilling and Migration of Rat Microglial Cells
Microglial activation involves Ca(2+) signaling, and numerous receptors can evoke elevation of intracellular Ca(2+). ATP released from damaged brain cells can activate ionotropic and metabotropic purinergic receptors, and act as a chemoattractant for microglia. Metabotropic P2Y receptors evoke a Ca(2+) rise through release from intracellular Ca(2+) stores and store-operated Ca(2+) entry, and so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Thorax
دوره 61 10 شماره
صفحات -
تاریخ انتشار 2006